Optimal Absorption & Scattering in Embedded Design Problems

Kurt Schab¹, Austin Rothschild*¹, Miloslav Capek², Lukas Jelinek², and Mats Gustafsson³

¹Santa Clara University, USA ²Czech Technical University in Prague, Czech Republic ³Lund University, Sweden

March 26, 2021

Outline

- 1 Background
- 2 General Optimization Procedure
 - Problem Formulation
 - Closed Feasible Regions
- 3 Application: Embedded Designs
- 4 Conclusions & Future Work

Background: Nanophotonics, fundamental bounds, & inverse design

- ► Nanophotonics: study of light-matter interactions on the nanometer scale
- Applications
 - Fluorescence
 - Near-field & on-chip optics
 - Photonic crystals
- ► Fundamental bound: absolute limit on system performance subject to constraints
- Inverse design: using optimization to search for device with best performance
- Fundamental bounds give insight into performance characteristics devices can reach via inverse design

Source: rebelem.com

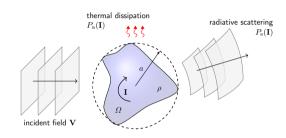
Background: History, Development, & Techniques

- Recent efforts: finding physical bounds on performance parameters of plasmonic and photonic devices
 - Cross-section bounds; directional scattering
 - Radiative heat transfer
 - Near-field enhancement/Purcell factor
- Order of development:
 - Shape-independent bounds [Miller et al. 2016]
 - ► Shape-dependent bounds [Molesky et al. 2020]
 - ► Shape & material-dependent bounds [Gustafsson, Schab, Jelinek, & Capek 2020]
- ► Strategies for deriving bounds on performance for microwave antennas (efficiency, directivity, Q-factor) can be reformulated to analyze problems in nanophotonics

Background: Scattering, Absorption, and Extinction

- Qualify nanophotonic structures with:
 - P_a(I), Absorbed power: Total cycle-mean power dissipated by an arbitrary current I. Dependent on material.
 - P_s(I), Scattered power: Total cycle-mean power radiated by I. Dependent on free-space.
 - $ightharpoonup P_{\rm t}({f I},{f V})$, Extincted power: Sum of $P_{\rm a}+P_{\rm s}$

$$\mathbf{V} = \mathbf{ZI} = (\mathbf{R} + i\mathbf{X})\mathbf{I}$$
 $\mathbf{R} = \mathbf{R}_0 + \mathbf{R}_{
ho}$
 $\mathbf{X} = \mathbf{X}_0 + \mathbf{X}_{
ho}$



Goal

Study "best possible" limits of scattering, absorption, and extinction cross-sections for an object of arbitrary shape and material properties.

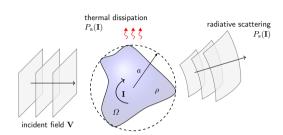
Outline

- 1 Background
- 2 General Optimization Procedure
 - Problem Formulation
 - Closed Feasible Regions
- 3 Application: Embedded Designs
- 4 Conclusions & Future Work

Current-Based Optimization Problems

Driven solution: $I = Z^{-1}V$

- satisfies Maxwell's equations
- unique
- ightharpoonup implies specific structure within \varOmega



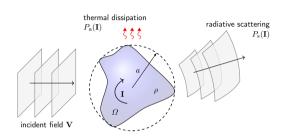
Current-Based Optimization Problems

Driven solution: $I = Z^{-1}V$

- satisfies Maxwell's equations
- unique
- ightharpoonup implies specific structure within \varOmega

Relaxed solutions: $\{I : I^HZI = I^HV\}$

- satisfies global power conservation
- non-unique
- ightharpoonup contains driven currents on all possible substructures within Ω



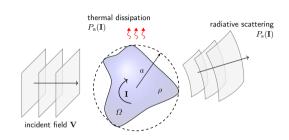
Current-Based Optimization Problems

Driven solution: $I = Z^{-1}V$

- satisfies Maxwell's equations
- unique
- ightharpoonup implies specific structure within \varOmega

Relaxed solutions: $\{I : I^HZI = I^HV\}$

- satisfies global power conservation
- non-unique
- ightharpoonup contains driven currents on all possible substructures within Ω



Strategy

Form optimization problems over all relaxed solutions to find performance bounds

$$\max_{\mathbf{I}} \ C(\mathbf{I}), \quad \text{s.t. } \mathbf{I}^{\text{H}}\mathbf{Z}\mathbf{I} = \mathbf{I}^{\text{H}}\mathbf{V}$$

General Optimization Procedure: Multiple Objectives

$$\begin{split} \max \quad & w_{\mathrm{a}}P_{\mathrm{a}}+w_{\mathrm{s}}P_{\mathrm{s}} \\ \mathrm{s.t.} \quad & P_{\mathrm{a}}+P_{\mathrm{s}}-P_{\mathrm{t}}=0, \end{split} \qquad \begin{aligned} \max \quad & \mathbf{I}^{\mathrm{H}}(w_{\mathrm{a}}\mathbf{R}_{\rho}+w_{\mathrm{s}}\mathbf{R}_{0})\mathbf{I} \\ \mathrm{s.t.} \quad & \mathbf{I}^{\mathrm{H}}(\mathbf{R}_{\rho}+\mathbf{R}_{0})\mathbf{I}-\mathrm{Re}\{\mathbf{I}^{\mathrm{H}}\mathbf{V}\}=0. \end{aligned}$$

A way to study the relative *trade-off* between conflicting goals by assigning arbitrary weights to a given objective.

No single solution exists that simultaneously optimizes each objective.

- ▶ Multi-objective problem yields a *Pareto-optimal* set: set of points at which an increase in performance in one parameter must be accompanied by performance decrease in the other.
- ► Feasible solution space is visualized by the Pareto-frontier.

Simultaneous Maximization

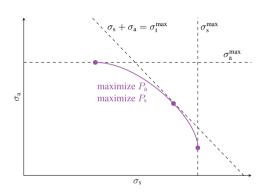
$$\begin{aligned} \max_{\mathbf{I}} & \alpha P_{\mathrm{a}} + (1 - \alpha) P_{\mathrm{s}} & \max_{\mathbf{I}} & \alpha \mathbf{I}^{\mathrm{H}} \mathbf{R}_{\rho} \mathbf{I} + (1 - \alpha) \mathbf{I}^{\mathrm{H}} \mathbf{R}_{0} \mathbf{I} \\ \mathrm{s.t.} & P_{\mathrm{a}} + P_{\mathrm{s}} - P_{\mathrm{t}} = 0 & \mathrm{s.t.} & \mathbf{I}^{\mathrm{H}} (\mathbf{R}_{\rho} + \mathbf{R}_{0}) \mathbf{I} - \mathrm{Re} \{ \mathbf{I}^{\mathrm{H}} \mathbf{V} \} = 0 \end{aligned}$$

- Goal: maximize absorbed and scattered power with regards to conservation of power
 - ▶ What is trade-off between maximized absorption and scattering?
- ▶ Objective functions are weighted such that $w_a = \alpha$, $w_s = (1 \alpha)$ for $\alpha \in [0, 1]$
 - $\sim \alpha = 1 \rightarrow \text{maximum absorption}$
 - ightharpoonup lpha = 0
 ightharpoonup maximum scattering
 - $\sim \alpha = 0.5 \rightarrow$ maximum extincted power

Simultaneous maximization

max
$$\alpha \mathbf{I}^{H} \mathbf{R}_{\rho} \mathbf{I} + (1 - \alpha) \mathbf{I}^{H} \mathbf{R}_{0} \mathbf{I}$$

s.t. $\mathbf{I}^{H} (\mathbf{R}_{\rho} + \mathbf{R}_{0}) \mathbf{I} - \text{Re} \{ \mathbf{I}^{H} \mathbf{V} \} = 0$
 $\alpha \in [0, 1]$

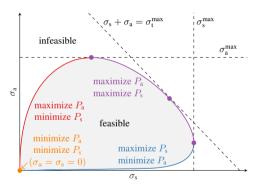


Simultaneous maximization Pareto front for fixed ka and real resistivity ρ_r/a Ω .

Extending the Weights

$$\begin{aligned} & \underset{\mathbf{I}}{\text{max}} \quad \mathbf{I}^{\text{H}}(w_{\text{a}}\mathbf{R}_{\rho} + w_{\text{s}}\mathbf{R}_{0})\mathbf{I} \\ & \text{s.t.} \quad \mathbf{I}^{\text{H}}(\mathbf{R}_{\rho} + \mathbf{R}_{0})\mathbf{I} - \text{Re}\{\mathbf{I}^{\text{H}}\mathbf{V}\} = 0 \\ & w_{\text{a}} = \cos\phi, w_{\text{s}} = \sin\phi \\ & \phi \in [0, 2\pi] \end{aligned}$$

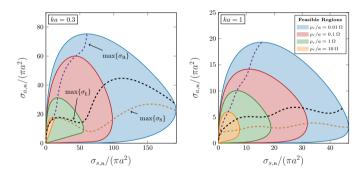
- ► Weight extension considers three additional optimization problems
 - 1. $\max P_{\rm a}$, $\min P_{\rm s}$
 - 2. $\max P_{\rm s}$, $\min P_{\rm a}$
 - 3. min $P_{\rm s}$, min $P_{\rm a}$
- ► Union of all problems (arbitrary real weights) leads to the *closed feasible region*



Union of 4-separate optimization problems for absorption/scattering results in closed-feasible region for an object confined to electrical size ka.

Closed Feasible Regions: Examples

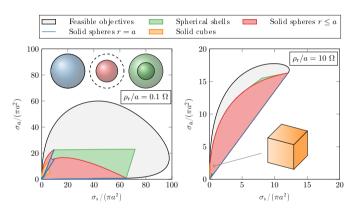
- ► Holding ka fixed and sweeping over different fixed real resistivities ρ_r generates multiple closed Pareto fronts
- Size of the feasible objective space depends on material and geometry



Feasible sets on $\sigma_{s,\mathbf{R}}/(\pi a^2)$, $\sigma_{a,\mathbf{R}}/(\pi a^2)$ for obstacles composed of a material with $\rho_{\mathbf{r}}/a \in \{0.01,0.1,1,10\}$ Ω circumscribed by spheres with radii ka=0.3 (left), and ka=1 (right).

Are the bounds tight? Filling the Closed Feasible Regions

- Feasible solution region (gray), realized solutions (blue, red, green)
- ▶ Blue: solid spheres, r = a, parameterized imaginary resistivity ρ_i
- ▶ **Red:** solid spheres, $r \le a$, parameterized ρ_i
- ▶ **Green:** core-shell, fixed core radius r' = a/2, independent variation of ρ_i in core/shell layers



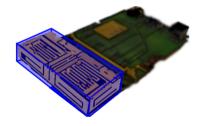
Realized cross-sections for designs confined to a sphere of size ka=0.3 with fixed real resistivity $\rho_{\rm r}/a=0.1~\Omega$ (left) and $\rho_{\rm r}/a=10~\Omega$ (right).

Outline

- 1 Background
- 2 General Optimization Procedure
 - Problem Formulation
 - Closed Feasible Regions
- 3 Application: Embedded Designs
- 4 Conclusions & Future Work

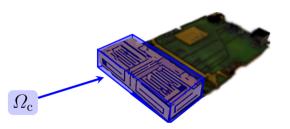
Embedded design: devices containing separate regions, with only specified regions able to be altered

- Embedded design: devices containing separate regions, with only specified regions able to be altered
- Example
 - Chassis (vehicle) mounted antennas



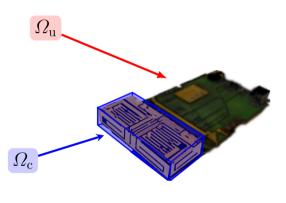
[Gustafsson, 2016]

- Embedded design: devices containing separate regions, with only specified regions able to be altered
- Example
 - Chassis (vehicle) mounted antennas
- ightharpoonup Controllable region: $\Omega_{
 m c}$
 - ► (Antenna)
 - Arbitrary configuration of vacuum & material of select properties



[Gustafsson, 2016]

- Embedded design: devices containing separate regions, with only specified regions able to be altered
- Example
 - Chassis (vehicle) mounted antennas
- ightharpoonup Controllable region: $\Omega_{
 m c}$
 - (Antenna)
 - Arbitrary configuration of vacuum & material of select properties
- ▶ Uncontrollable region: Ω_{u}
 - ► (Ground plane)
 - Not allowed to be altered.



[Gustafsson, 2016]

Controllable / Uncontrollable Regions

 Represent controllable / uncontrollable interaction via problem-specific Green's function

$$\begin{bmatrix} \mathbf{V}_{\mathrm{u}} \\ \mathbf{V}_{\mathrm{c}} \end{bmatrix} = \begin{bmatrix} \mathbf{Z}_{\mathrm{uu}} & \mathbf{Z}_{\mathrm{uc}} \\ \mathbf{Z}_{\mathrm{cu}} & \mathbf{Z}_{\mathrm{cc}} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{\mathrm{u}} \\ \mathbf{I}_{\mathrm{c}} \end{bmatrix}$$

 Explicitly enforce Maxwell's equations on the uncontrollable region

$$\mathbf{I}_{\mathrm{u}} = \mathbf{Z}_{\mathrm{uu}}^{1} \mathbf{V}_{\mathrm{u}} - \mathbf{Z}_{\mathrm{uu}}^{1} \mathbf{Z}_{\mathrm{uc}} \mathbf{I}_{\mathrm{c}}$$

 Rewrite objectives and constraints solely in terms of controllable currents

Controllable Maxwell's equations relaxed

Uncontrollable

Maxwell's equations enforced

Controllable / uncontrollable regions

Free space problem

$$\begin{aligned} \max_{\mathbf{I}} \quad & w_{\mathrm{a}}P_{\mathrm{a}}(\mathbf{I}) + w_{\mathrm{s}}P_{\mathrm{s}}(\mathbf{I}) \\ \mathrm{s.t.} \quad & P_{\mathrm{a}}(\mathbf{I}) + P_{\mathrm{s}}(\mathbf{I}) = P_{\mathrm{t}}(\mathbf{I}, \mathbf{V}) \\ & W(\mathbf{I}) = W_{\mathrm{t}}(\mathbf{I}, \mathbf{V}) \end{aligned}$$

Controllable / uncontrollable regions

Free space problem

$$\begin{aligned} \max_{\mathbf{I}} \quad & w_{\mathrm{a}}P_{\mathrm{a}}(\mathbf{I}) + w_{\mathrm{s}}P_{\mathrm{s}}(\mathbf{I}) \\ \mathrm{s.t.} \quad & P_{\mathrm{a}}(\mathbf{I}) + P_{\mathrm{s}}(\mathbf{I}) = P_{\mathrm{t}}(\mathbf{I}, \mathbf{V}) \\ & W(\mathbf{I}) = W_{\mathrm{t}}(\mathbf{I}, \mathbf{V}) \end{aligned}$$

$$A(\mathbf{I}) = \mathbf{I}^{H} \mathbf{A} \mathbf{I} + \operatorname{Re} \{ \mathbf{I}^{H} \mathbf{a} \} + a, \quad \mathbf{I}_{u} = \mathbf{C} \mathbf{V}_{u} + \mathbf{D} \mathbf{I}_{c}$$

$$\downarrow$$

$$\tilde{A}(\mathbf{I}_{c}) = \mathbf{I}^{H} \tilde{\mathbf{A}} \mathbf{I} + \operatorname{Re} \{ \mathbf{I}^{H} \tilde{\mathbf{a}} \} + \tilde{a}$$

Controllable / uncontrollable regions

Free space problem

$$\begin{aligned} \max_{\mathbf{I}} \quad & w_{\mathrm{a}}P_{\mathrm{a}}(\mathbf{I}) + w_{\mathrm{s}}P_{\mathrm{s}}(\mathbf{I}) \\ \mathrm{s.t.} \quad & P_{\mathrm{a}}(\mathbf{I}) + P_{\mathrm{s}}(\mathbf{I}) = P_{\mathrm{t}}(\mathbf{I}, \mathbf{V}) \\ & W(\mathbf{I}) = W_{\mathrm{t}}(\mathbf{I}, \mathbf{V}) \end{aligned}$$

Embedded problem

$$\begin{aligned} \max_{\mathbf{I}_{c}} \quad & w_{a}\tilde{P}_{a}(\mathbf{I}_{c}) + w_{s}\tilde{P}_{s}(\mathbf{I}_{c}) \\ \text{s.t.} \quad & \tilde{P}_{a}(\mathbf{I}_{c}) + \tilde{P}_{s}(\mathbf{I}_{c}) = \tilde{P}_{t}(\mathbf{I}_{c}, \mathbf{V}) \\ & \tilde{W}(\mathbf{I}_{c}) = \tilde{W}_{t}(\mathbf{I}_{c}, \mathbf{V}) \end{aligned}$$

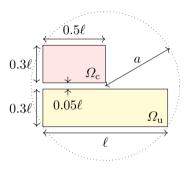
$$A(\mathbf{I}) = \mathbf{I}^{H} \mathbf{A} \mathbf{I} + \operatorname{Re} \{ \mathbf{I}^{H} \mathbf{a} \} + a, \quad \mathbf{I}_{u} = \mathbf{C} \mathbf{V}_{u} + \mathbf{D} \mathbf{I}_{c}$$

$$\downarrow$$

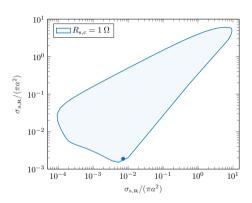
$$\tilde{A}(\mathbf{I}_{c}) = \mathbf{I}^{H} \tilde{\mathbf{A}} \mathbf{I} + \operatorname{Re} \{ \mathbf{I}^{H} \tilde{\mathbf{a}} \} + \tilde{a}$$

Partitioning method leads to shared structure between free space and embedded problems.

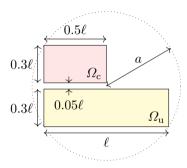
Example



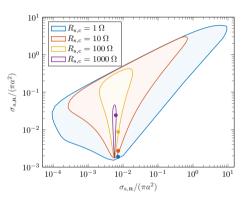
- ► Consider only real power conservation (allow tunable reactance, metamaterials).
- Uncontrollable region prevents perfect cloaking $(\sigma_a = \sigma_s = 0)$.



Example

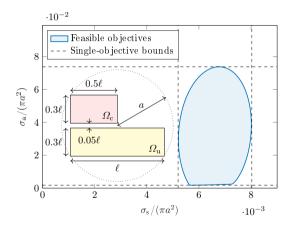


- ► Consider only real power conservation (allow tunable reactance, metamaterials).
- Uncontrollable region prevents perfect cloaking $(\sigma_a = \sigma_s = 0)$.

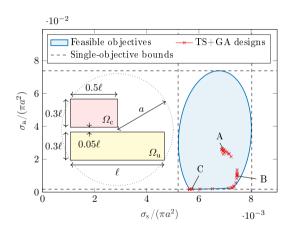


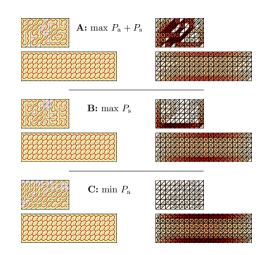
► Increased loss in controllable region restricts scattering control.

Automated Synthesis



Automated Synthesis



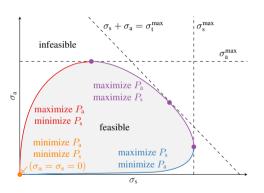


Outline

- 1 Background
- 2 General Optimization Procedure
 - Problem Formulation
 - Closed Feasible Regions
- 3 Application: Embedded Designs
- 4 Conclusions & Future Work

Conclusions & Future Work

- Bounds quantify feasibility of design objectives
- Devices with engineered behavior can be compared to their potential optimum behavior
 - \star Quantify optimality of inverse design routines
- Multi-objective framework allows for multiple performance metrics to be assessed



Schab et al. "Trade-offs in absorption and scattering by nanophotonic structures," Optics Express, 2020.